Model Tuner Documentation
- iPython Notebooks
- Key Methods and Functionalities
- Helper Functions
- Input Parameters
- Pipeline Management
- Binary Classification
- AIDS Clinical Trials Group Study
- Step 1: Import Necessary Libraries
- Step 2: Load the dataset, define X, y
- Step 3: Check for zero-variance columns and drop accordingly
- Step 4: Create an Instance of the XGBClassifier
- Step 5: Define Hyperparameters for XGBoost
- Step 6: Initialize and Configure the
Model
- Step 7: Perform Grid Search Parameter Tuning
- Step 8: Fit the Model
- Step 9: Return Metrics (Optional)
- Step 10: Calibrate the Model (if needed)
- Classification Report (Optional)
- Recursive Feature Elimination (RFE)
- Imbalanced Learning
- SHAP (SHapley Additive exPlanations)
- Step 1: Transform the test data using the feature selection pipeline
- Step 2: Retrieve the trained XGBoost classifier from the pipeline
- Step 3: Extract feature names from the training data, and initialize the SHAP explainer for the XGBoost classifier
- Step 4: Compute SHAP values for the transformed test dataset and generate a summary plot of SHAP values
- Step 5: Generate a summary plot of SHAP values
- Feature Importance and Impact
- AIDS Clinical Trials Group Study
- Regression
- California Housing with XGBoost
- Step 1: Import Necessary Libraries
- Step 2: Load the Dataset
- Step 3: Create an Instance of the XGBRegressor
- Step 4: Define Hyperparameters for XGBoost
- Step 5: Initialize and Configure the
Model
- Step 6: Perform Grid Search Parameter Tuning and Retrieve Split Data
- Step 7: Fit the Model
- Step 8: Return Metrics (Optional)
- California Housing with XGBoost
- Bootstrap Metrics
- GitHub Repository
- Acknowledgements
- Citing Model Tuner
- Changelog
- Version 0.0.22a
- Version 0.0.21a
- Version 0.0.20a
- Version 0.0.19a
- Version 0.0.18a
- Version 0.0.17a
- Version 0.0.16a
- Version 0.0.15a
- Version 0.0.014a
- Version 0.0.013a
- Version 0.0.012a
- Version 0.0.011a
- Version 0.0.010a
- Version 0.0.09a
- Version 0.0.08a
- Version 0.0.07a
- Version 0.0.06a
- Version 0.0.05a
- Version 0.0.02a
- References